

Earned Schedule

Walt Lipke waltlipke@cox.net (405) 364-1594

> PMI – Tulsa June 7, 2006

Copyright 2006 Lipke

Earned Schedule Training Basic

EVM Schedule Indicators
Introduction to Earned Schedule

Concept & Metrics
Indicators
Predictors
Terminology

Earned Schedule Training Basic

Application of Concept

 Analysis & Verification
 Prediction Comparisons

 Demonstration of ES Calculator

 V1 & V2 Calculators

 Interpolation Error

Earned Schedule Training Basic

Exercise – Calculate ES, SV(t), SPI(t)
 Status Update

 Applications
 PMI-CPM Earned Value Practice Standard
 ES Website

Earned Schedule Training Advanced

Network Schedule Analysis
 Impediments / Constraints
 Rework
 EV Research
 Schedule Adherence

Earned Schedule Training Advanced

Effective Earned Value

 Derivation / Indicators / Prediction

 Summary

 Quiz & Discussion (if time available)
 Wrap Up

Earned Value Management Schedule Indicators

EVM Schedule Indicators

8

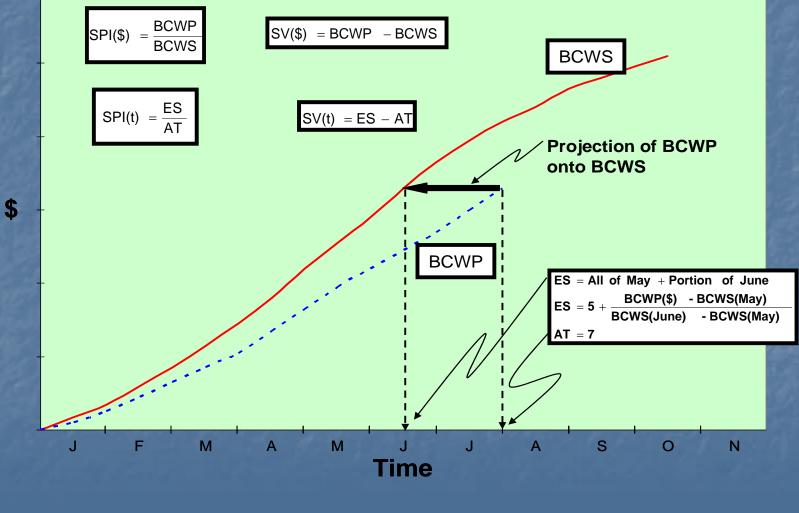
EVM Schedule Indicators

SV & SPI behave erratically for projects behind schedule

- SPI improves and concludes at 1.00 at end of project
- SV improves and concludes at \$0 variance at end of project

Schedule indicators lose predictive ability over the last third of the project

EVM Schedule Indicators


Why does this happen? \blacksquare SV = BCWP – BCWS ■ SPI = BCWP / BCWS At planned completion BCWS = BAC At actual completion BCWP = BAC When actual > planned completion \blacksquare SV = BAC - BAC = \$000 \square SPI = BAC / BAC = 1.00 **Regardless of lateness !!**

Introduction to Earned Schedule

Earned Schedule Concept

Copyright 2006 Lipke

Earned Schedule Metrics Required measures

- Performance Management Baseline (PMB) the time phased planned values (BCWS) from project start to completion
- Earned Value (BCWP) the planned value which has been "earned"

Actual Time (AT) - the actual time duration from the project beginning to the time at which project status is assessed

All measures available from EVM

Earned Schedule Metrics

ES_{cum} is the:

Number of completed BCWS time increments BCWP exceeds + the fraction of the incomplete BCWS increment

ES_{cum} = C + I where:

C = number of time increments for BCWP \ge BCWS I = (BCWP - BCWS_C) / (BCWS_{C+1} - BCWS_C)

- ESperiod(n) = EScum(n) EScum(n-1) = ΔES_{cum}
- ATcum
- ATperiod(n) = ATcum(n) ATcum(n-1) = ΔAT_{cum} ΔAT_{cum} is normally equal to 1

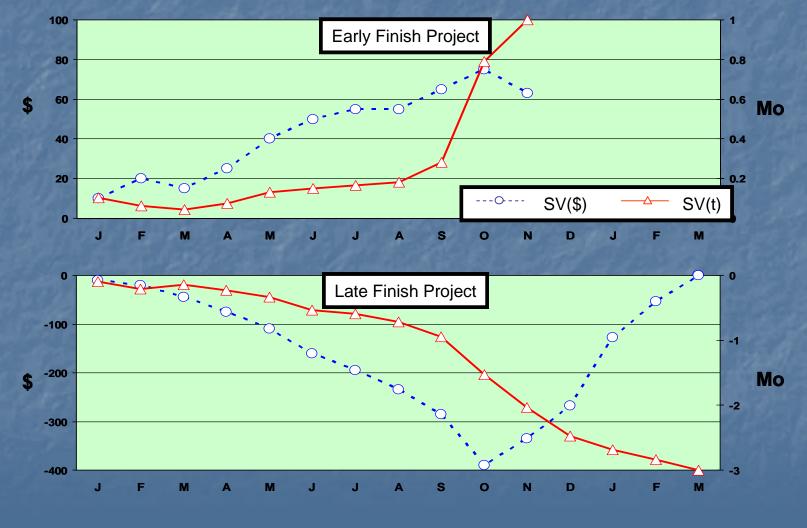
Earned Schedule Indicators

Schedule Variance: SV(t)

 Cumulative: SV(t) = ES_{cum} - AT_{cum}
 Period: ΔSV(t) = Δ ES_{cum} - Δ AT_{cum}

 Schedule Performance Index: SPI(t)

 Cumulative: SPI(t) = ES_{cum} / AT_{cum}
 Period: ΔSPI(t) = ΔES_{cum} / ΔAT_{cum}



Earned Schedule Indicators

What happens to the ES indicators, SV(t) & SPI(t), when the planned project duration (PD) is exceeded (BCWS = BAC)? They Still Work ...<u>Correctly</u>!! **ES** will be \leq PD, while AT > PD SV(t) will be negative (time behind schedule) \square SPI(t) will be < 1.00 Reliable Values from Start to Finish !!


SV Comparison

Copyright 2006 Lipke

SPI Comparison

Copyright 2006 Lipke

Earned Schedule Predictors Can the project be completed as planned? TSPI = Plan Remaining / Time Remaining (PD – ES) / (PD – AT) where (PD – ES) = PDWR PDWR = Planned Duration for Work Remaining TSPI = (PD – ES) / (ED – AT) where ED = Estimated Duration

TSPI Value	Predicted Outcome	
≤ 1.00	Achievable	
> 1.10	Not Achievable	

Earned Schedule Predictors

Long time goal of EVM ... Prediction of total project duration from present schedule status Independent Estimate at Completion (time) \blacksquare IEAC(t) = PD / SPI(t) \blacksquare IEAC(t) = AT + (PD - ES) / PF(t) where PF(t) is the Performance Factor (time) Analogous to IEAC used to predict final cost Independent Estimated Completion Date (IECD) IECD = Start Date + IEAC(t)

Earned Schedule Terminology

	EVM	Earned Schedule
	Earned Value (EV)	Earned Schedule (ES)
Status	Actual Costs (AC)	Actual Time (AT)
	SV	SV(t)
	SPI	SPI(t)
Future	Budgeted Cost for Work Remaining (BCWR)	Planned Duration for Work Remaining (PDWR)
Work	Estimate to Complete (ETC)	Estimate to Complete (time) ETC(t)
	Variance at Completion (VAC)	Variance at Completion (time) VAC(t)
Prediction	Estimate at Completion (EAC) (supplier)	Estimate at Completion (time) EAC(t) (supplier)
	Independent EAC (IEAC) (customer)	Independent EAC (time) IEAC(t) (customer)
	To Complete Performance Index (TCPI)	To Complete Schedule Performance Index (TSPI)

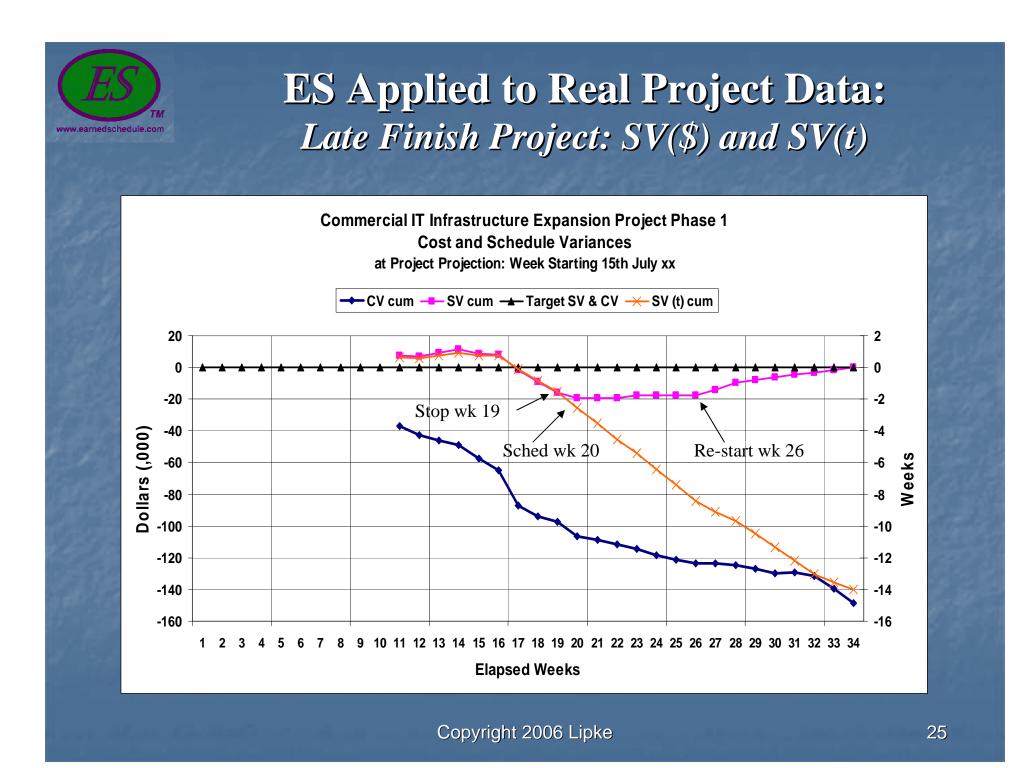
Earned Schedule Terminology

Metrics	Earned Schedule	ES _{cum}	ES = C + I number of complete periods (C) plus an incomplete portion (I)	
	Actual Time	AT _{cum}	AT = number of periods executed	
	Schedule Variance	SV(t)	SV(t) = ES - AT	
Indicators	Schedule Performance Index	SPI(t)	SPI(t) = ES / AT	
	To Complete Schedule Performance Index	TSPI(t)	TSPI(t) = (PD-ES) / (PD-AT)	
			TSPI(t) = (PD-ES) / (ED-AT)	
Predictors	edictors Independent Estimate IEAC		IEAC(t) = PD / SPI(t)	
	at Completion (time)		IEAC(t) = AT + (PD - ES) / PF(t)	

Earned Schedule Key Points

ES Indicators constructed to behave in an analogous manner to the EVM Cost Indicators, CV and CPI

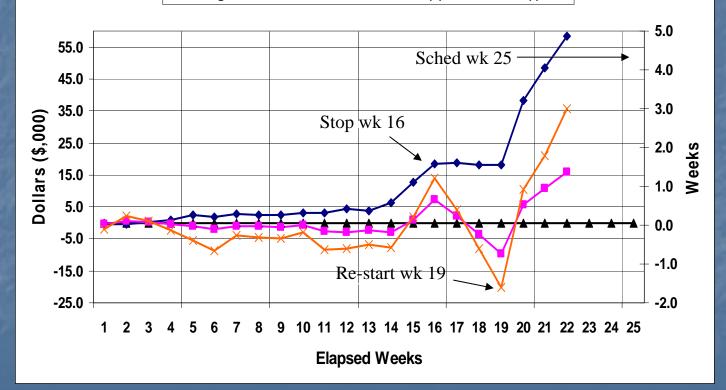
SV(t) and SPI(t)


- <u>Not</u> constrained by BCWS calculation reference
- Provide <u>duration</u> based measures of schedule performance

Valid for entire project, including early and late finish

Facilitates integrated Cost/Schedule Management (using EVM with ES)

Application of Concept (Using Real Project Data)



Early Finish Project: SV(\$) and SV(t)

Commerical IT Infrastructure Expansion Project: Phases 2 & 3 Combined Cost and Schedule Variances as at Project Completion: Week Starting 9th October xx

→ Target SV & CV → CV cum → SV (\$) cum → SV (t) cum

Copyright 2006 Lipke

Prediction Comparisons

"Further Developments" in Earned Schedule Schedule Duration Prediction **Calculation of IEAC(t): short form IEAC(t) = Planned Duration / SPI(t) Planned Duration for Work Remaining PDWR = Planned Duration – Earned Schedule cum** Analogous to the EVM BCWR **Calculation of IEAC(t): long form** PDWR

IEAC(t) = Actual Time +

Performance Factor

IEAC(t) Prediction Comparison Early and Late Finish Project Examples

IEAC(t) Metrics at Project Completion		
Early Finish Project		
Planned Duration (weeks)	25	
Actual Time (weeks)	(22)	
Percentage Complete cum	100%	
CPI cum	2.08	
SPI(t) cum	1.14	
SPI(\$) cum	1.17	
Critical Ratio cum	2.43	
IEAC(t) PD/SPI(t) cum	22.0	
IEAC(t) PD/SPI(\$) cum	21.4	
IEAC(t) PD/CR cum	10.3	

IEAC(t) Metrics at Project Completion		
Late Finish Project - pre ES		
Planned Duration (weeks)	20	
Actual Time (weeks)	(34)	
Percentage Complete cum	100%	
CPI cum	0.52	
SPI(t) cum	0.59	
SPI(\$) cum	1.00	
Critical Ratio cum	0.52	
IEAC(t) PD/SPI(t) cum	34.0	
IEAC(t) PD/SPI(\$) cum	20.0	
IEAC(t) PD/ CR cum	38.7	

In both examples, the <u>pre ES</u> predictors (in red) <u>fail</u> to correctly calculate the Actual Duration at Completion!

The ES predictor, SPI(t) alone <u>correctly</u> calculates the Actual Duration at Completion in both cases

"Further Developments" in Earned Schedule *Schedule Duration Prediction* (continued)

<u>Pre ES formulae and results algebraically flawed</u>

"... there is little theoretical justification for EVM practitioners continuing to use the pre ES predictors of schedule performance. Conversion to and use of the ES based techniques is strongly recommended."

- Kym Henderson

There's got to be a better method!

ion	253	IEAC(t) Metrics at Project Completion		
100	100	Late Finish Project using E	S	
25		Planned Duration (weeks)	20	
22) 5.0		Actual Time (weeks)	(34)	
5.0	- 2	Earned Schedule cum	20.0	
0.0	22	Planned Duration Work	0.0	
.0		Remaining	0.0	
)0%		Percentage Complete cum	100%	
.08	6 . inc.	CPI cum	0.53	
.14	1	SPI(t) cum	0.59	
.17	18.0	SPI(\$) cum	1.00	
.43	1.5	Critical Ratio cum	0.52	
.37		Critical Ratio ES cum	0.30	
2.0		IEAC(t) PF = SPI(t) cum	34.0	
2.0		IEAC(t) PF = SPI(\$) cum	34.0	
2.0	12.12	IEAC(t) PF = CR cum	34.0	
2.0		IEAC(t) PF = CR ES cum	34.0	

IEAC(t) Metrics at Project Completion Early Finish Project using ES	
Planned Duration (weeks)	25
Actual Time (weeks)	(22)
Earned Schedule cum	25.0
Planned Duration Work	0.0
Remaining	0.0
Percentage Complete cum	100%
CPI cum	2.08
SPI(t) cum	1.14
SPI(\$) cum	1.17
Critical Ratio cum	2.43
Critical Ratio ES cum	2.37
IEAC(t) PF = SPI(t) cum	22.0
IEAC(t) PF = SPI(\$) cum	22.0
IEAC(t) PF = CR cum	22.0
IEAC(t) PF = CR ES cum	22.0

Use of the ES "long form" IEAC(t) formula, results in <u>correct</u> calculation of Actual Duration at Completion

Copyright 2006 Lipke

IEAC(t) Predictions using <u>ES</u> Techniques:

<u>ES formulae and results are algebraically correct</u>

"Whilst assessments of the predictive utility of the ES calculated IEAC(t) and the relative merits of using the various performance factors available are matters for further research and empiric validation, the theoretical integrity of ES now seems confirmed."

- Kym Henderson

2 My Experience Summarised

- Schedule Performance Indicators (for early and late finish projects):
 - SPI(t) & SV(t) do portray the real schedule performance in agreement with [1] [2]
- Forecasting Duration (for early and late finish projects):
 - at early & middle project stage: pre-ES & ES forecasts produce similar results
 - at late project stage: ES forecasts outperform all pre-ES forecasts in agreement with [2] [3]

Assessing Project Duration (for early and late finish projects):

the use of the SPI(t) in conjunction with the TCSPI(t) has been demonstrated to be useful to manage the schedule expectations application of [3]

[1] Lipke Walt, Schedule is Different, The Measurable News, Summer 2003

- [2] Henderson Kym, Earned Schedule: A Breakthrough Extension to Earned Value Theory? A Retrospective Analysis of Real Project Data, The Measurable News, Summer 2003
 [2] Henderson, Kym, Eurther Development in Earned Schedule The Measurable News, Spring
- [3] Henderson, Kym, Further Development in Earned Schedule, The Measurable News, Spring 2004

IIPMC 2005 Fall Conference Rev.2

π Stephan Vandevoorde

Demonstration of Earned Schedule Calculator

Earned Schedule Calculator

Earned Schedule Calculator (V1)

Status Update

Early Adopters

EVM Instructors

- PMA, Management Technologies ...
- Boeing Dreamliner®, Lockheed Martin, US State Department, Secretary of the Air Force
- Several Countries Australia, Belgium, Sweden, USA ...
- Applications across weapons programs, construction, software development, ...
- Range of project size from very small and short to extremely large and long duration

PMI-CPM EVM Practice Standard

- Inclusion of Emerging Practice Insert into PMI - EVM Practice Standard
 - Dr. John Singley, VP of CPM
- Included in Box 3-1 of EVM Practice Standard
 - Describes basic principles of "Earned Schedule"
 - Provides foundation for acceptance as a valid extension to EVM
- EVM Practice Standard released at 2004 IPMC Conference

Box 3-1: Time-Based Schedule Measures -- An Emerging EVM Practice

In the current practice of EVM, schedule variance and schedule performance are both measures of work scope, not time. The work is represented by its budgeted cost as recorded in the performance measurement baseline. The EVM schedule variance is the difference between work performed and work scheduled, and the schedule performance index is the ratio of work performed to work scheduled. For Project EZ, these measures indicate that work is not being accomplished as quickly or as efficiently as planned:

8V = EV - PV = 32 - 48 = -18

8PI = EV / PV = 32 / 48 = 0.8

If the work were to continue at this rate, then all of the work of Project EZ would take 18 months to accomplish instead of the 12 months planned (12 / 0.6667 = 18).

These SV and SPI measures are useful indicators and predictors of performance and results. But, because they are based on work and not time, they can behave in ways that are not normally expected of schedule indicators and predictors. The problem can be illustrated with Project EZ: Whether all of the work is completed as planned at 12 months or at 18 months as predicted by the four-month SPI of 0.67, it will be completed eventually and at that time the work/based schedule variance and performance. For when the work is completed according to plan, but problematic if it is not. If Project EZ does take 18 months, SV will nonetheless equal 0 and SPI equal 1.0, when it's clear that Project EZ is 6 months late and averaged only 67% efficiency.

There is an emerging practice in EVM, which uses time-based measures of schedule variance and schedule performance as an alternative or supplement to the traditional work-based measures. This new method avoids the problems of the work-based method illustrated above. Whereas the traditional work-based method compares work performed and work scheduled at or to a point in time, the time-based method compares work the actual time with the planned time for the work performed. In the case of Project E2, the work performed after four months (AT = 4) had a planned time of three months (PT = 3) (refer to Figures 2-6 and 2-7). In a manner that parallels the use of AC and EV in traditional EVM, practitioners are beginning to use actual time (AT) and planned time (PT) to compute SV and SPI:

8V(t) = PT - AT = 3 - 4 = -1 month 8Pi(t) = PT / AT = 3 / 4 = 0.76

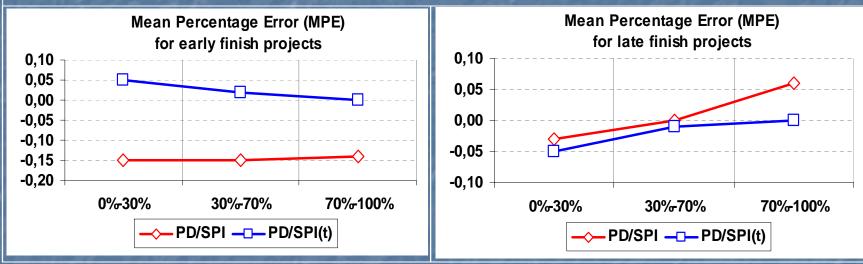
While the work- and time-based methods provide comparable results at the four-month point in Project EZ, look at the difference at project completion after 18 months:

8V(t) = PT – AT = 12 – 18 = – 8 months	8PI(t) = PT / AT = 12 / 18 = 0.87
8V(8) = EV - PV = 160 - 160 = 0	8PI(\$) = EV / PV = 160 / 160 = 1.0

Available Resources

PMI-Sydney <u>http://sydney.pmichapters-australia.org.au/</u> Repository for ES Papers and Presentations Earned Schedule Website http://www.earnedschedule.com/ Established February 2006 Contains News, Papers, Presentations, ES Terminology, ES Calculators Identifies Contacts to assist with application Wikipedia now references Earned Schedule http://en.wikipedia.org/wiki/Earned_Schedule

Foreseen Uses of Earned Schedule


- Enables independent evaluation of schedule estimates: ETC(t), EAC(t)
 - Client, Contractor, Program and Project Manager
- Facilitates insight into network schedule performance
 - Duration based Schedule indicators
 - Identification of impediments/constraints and potential future rework
 - Evaluation of adherence to plan
- Improvement to Schedule and Cost prediction
 - Client, Contractor, Program and Project Manager
- Application of direct statistical analysis of schedule performance

3 Research Efforts (2/3)

Extracted results from [8]: Forecast Accuracy and the Completion of Work

Simulation runs performed: 1 run project finish ahead of schedule, 1 run projects finish behind

Plans are made to present the research report "A simulation and evaluation of earned value metrics to forecast the project duration" at the 22nd PMI-CPM Spring Conference 2006.

[8] Vanhoucke Mario, Vandevoorde Stephan, <u>A simulation and evaluation of earned value metrics to</u> <u>forecast the project duration</u> , Working Paper 2005/317, July 2005, Ghent University

IPMC 2005 Fall Conference - ES Practice Symposia Final 9

 π Stephan Vandevoorde

Summary

Summary - Basic

Derived from EVM data ... only Provides time-based schedule indicators Indicators do not fail for late finish projects Application is scalable up/down, just as is EVM Schedule prediction is better than any other EVM method presently used SPI(t) behaves similarly to CPI IEAC(t) = PD / SPI(t) behaves similarly to IEAC = BAC / CPI

Summary

- Schedule prediction much easier and possibly better than "bottoms-up" schedule analysis
 Application is growing in both small and large projects
- Practice recognized as "Emerging Practice"
- Resource availability enhanced with ES website and Wikipedia
- Research indicates ES superior to other methods

Summary

Facilitates bridging EVM to schedule analysis

- Identification of Constraints / Impediments and Rework
- Calculation of Schedule Adherence
- Creation of Effective Earned Value

Leads to improved Schedule & Cost Forecasting

Wrap-Up

Conclusion

"Whatever can be done using EVM for Cost Analysis can also be done using Earned Schedule for Schedule Analysis"

Earned Schedule

 A powerful new dimension to Integrated Project Performance Management (IPPM)
 A breakthrough in theory and application

Copyright 2006 Lipke

Contact Information

Walt Lipke		Kym Henderson
<u>waltlipke@cox.net</u>	Email	kym.henderson@froggy.com.au
(405) 364-1594	Phone	61 414 428 537